On subgroups of prime power index

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On subgroups of prime power index

We determine all nite groups G which admit a subgroup K of index p a ; p a prime, under the assumption that G has an irreducible and faithful GF (p)-module of dimension at most a. As an application to the theory of permutation groups we determine the maximal transitive subgroups of the primitive aane permutation groups.

متن کامل

On the Invariant Subgroups of Prime Index*

The totality formed by all the operators of any group (G) which are common to all the invariant subgroups of prime index (p) constitutes a characteristic subgroup, and the corresponding quotient group is the abelian group of order pK and of type (1, 1, 1, ■■■)-\ The number of the invariant subgroups of index p is therefore pK — 1/p — 1. The given totality includes all the operators of G which a...

متن کامل

Finite groups with $X$-quasipermutable subgroups of prime power order

Let $H$, $L$ and $X$ be subgroups of a finite group$G$. Then $H$ is said to be $X$-permutable with $L$ if for some$xin X$ we have $AL^{x}=L^{x}A$. We say that $H$ is emph{$X$-quasipermutable } (emph{$X_{S}$-quasipermutable}, respectively) in $G$ provided $G$ has a subgroup$B$ such that $G=N_{G}(H)B$ and $H$ $X$-permutes with $B$ and with all subgroups (with all Sylowsubgroups, respectively) $...

متن کامل

On the Invariant Subgroups of Prime Index* By

The totality formed by all the operators of any group (G) which are common to all the invariant subgroups of prime index (p) constitutes a characteristic subgroup, and the corresponding quotient group is the abelian group of order pK and of type (1, 1, 1, ■■■)-\ The number of the invariant subgroups of index p is therefore pK — 1/p — 1. The given totality includes all the operators of G which a...

متن کامل

finite groups with $x$-quasipermutable subgroups of prime power order

let $h$, $l$ and $x$ be subgroups of a finite group$g$. then $h$ is said to be $x$-permutable with $l$ if for some$xin x$ we have $al^{x}=l^{x}a$. we say that $h$ is emph{$x$-quasipermutable } (emph{$x_{s}$-quasipermutable}, respectively) in $g$ provided $g$ has a subgroup$b$ such that $g=n_{g}(h)b$ and $h$ $x$-permutes with $b$ and with all subgroups (with all sylowsubgroups, respectively) $v$...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1970

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1970.35.117